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ABSTRACT

The existence of a Nash equilibrium in the undiscounted repeated two-
person game of incomplete information on one side is established. The
proof depends on a new topological result resembling in some respect the

Borsuk-Ulam theorem.

Introduction

The motivation for considering results of this note comes from game theory, and
specifically from the problem, posed in 1968 by R. Aumann, M. Maschler and
R. Stearns {Au-Ma-St], whether any undiscounted infinitely repeated two-person
game of incomplete information on one side has a Nash equilibrium. (See also [Fo,
§3.3]. A short description of these games and of the necessary notions is given in
§3.) In this context these authors defined and studied a certain class of potential
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equilibria, which they called “joint plan equilibria”. In 1983 S. Sorin considered
a modification of a special case of the joint plan equilibrium and proved that
his “independent and 2-safe” joint plan equilibrium exists whenever the game
has only two states of nature. In the present note we settle in the positive the
problem stated above by proving the existence of such an equilibrium for games
with an arbitrary number of states of nature.

Our proof is a generalization of Sorin’s 1983 approach. It depends on a topo-
logical result; this is not a surprise, as several proofs in game theory depend on
various fixed-point and related theorems. Here we need however a new result,
which in its special case can be stated as follows: If xy is a point of a compact set
C CR"* and f: C — Y is a mapping into a space of dimension n — 1, then in the
boundary of C there exists a set Cy mapped by f into a singleton and containing
To in its convex hull. We say this is a statement of Borsuk-Ulam type, as in
the special case where C is a disk and Y an Euclidean space the Borsuk-Ulam
theorem shows that one may take for Cy a set consisting of 2 points. In fact we
show that a result of Oledzki easily implies that Cp may be be taken to consist
of 2 points whenever Y is a manifold; however for our applications it is essential
to avoid assuming the latter and also to allow f to be a multifunction. (By
Carathéodory’s theorem one can always replace Cy by its subset consisting of
< n+1 points, but in general we do not know when this bound may be lowered.)

The paper is organized as follows. We treat the topological results in §1 and
undiscounted repeated games in §3. In §2 we solve a certain system of inequalities
needed in §3 to prove the existence of equilibria. This is closely related to proving
in §2 a more general Theorem 2 giving conditions on a family {b,: @ — R},¢ern
of convex functions and on a convex set P C R* which suffice for the following
to be true: given a pg € P and a function a: @ — R such that a < b, Vv € R",
there exists a set Py C 0P containing pg in its convex hull and vectors v, normal
to OP at p (p € Pp) such that an affine functional on R" separates a from any of
the functions bp4v,, p € Po. Theorem 2 is established by using results of §1 and
is a geometric counterpart to the game-theoretic statements of this paper.

Notation: If K is a finite set then |K| denotes its cardinality, RY and RI¥! the
euclidean |K|-space, equipped with the standard norm, ex the coordinate unit
vectors of RX, A(K) the simplex conv{es: k € K} and e the vector )_, . €k-
The k-th coordinate of a vector y € RX is denoted y(k) or y*. If C is subset of
an euclidean space then C and int C denote, respectively, the boundary and the



Vol. 92, 1995 EQUILIBRIA IN GAMES 3

interior of C relative its affine span. All spaces are assumed to be metrizable.

1. A result of Borsuk—Ulam type

By a multifunction ®: X — Y we understand here a set ® C X x Y such that
for every z € X the set &(z) := {y € Y: (z,y) € ®} is nonempty and compact.
We write ®7(y) := {r € X: (z,y) € ®} and ®(4) := |J{P(a):a€ A} forye Y
and A C X. @ is said to be upper-semicontinuous if ® N (A x Y') is compact for
every compact subset A of X. (This holds whenever ® is closed in X xY and Y
is compact.)

Below, we need additional assumptions on the multifunctions we consider.
The case we have in mind is when they take values in contractible compacta,
but to treat this we fix a homology or cohomology functor s defined on the
category of all compacta and request merely that the multifunctions ®: X — Y
under consideration are n-acyclic, i.e. that hi(®(x)) = 0 for all k¥ < n whenever
z € X. We need h to satisfy standard axioms on the category of polyhedra and
to be continuous for inverse limits ([E-S] and [Sp]); also, we request that Vietoris’
theorem ([Be] and [Sp]) be true for h. Thus h may be the reduced Cech homology
with coefficients in a compact field or Cech cohomology; we write our proofs for
homology and they may be dualized easily.

Setup: In this section we denote by C a compact subset of R" of dimension n

and we fix a point g € C and upper-semicontinuous multifunctions F: C —» Y
and G: F(8C) — R".

THEOREM 1: Suppose F and G are n-acyclic and dim(F(C)\ F(0C)) <n — 1.
IfG(y) D F~}(y)NAC for every y € F(OC) then there exists a point yo € F(8C)
such that xo € G(yp).

Remark 1: We have dim(F(C) ~ F(9C)) < n—1 whenever dim F(int C) < n—1.
1

For the proof of the theorem we need two lemmas:

LEMMA 1: IfY is compact and Y' is a closed subset of Y such that dim(Y ~Y")
<n-—1, then h, (Y’ — Y} is a monomorphism.

Proof: Let (Y,Y’) = ((Yx,Y]), 7L, N) be an inverse sequence of polyhedral
pairs such that (Y,Y”) is the inverse limit of (Y,Y’) and dim(Yx~\Y})<n -1
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for every k. By the homology exact sequence we have kerh,_;(Y] — Yi) =
hn (Y%, Y}) = 0. Since inverse limits preserve monomorphisms the lemma follows
from the continuity of the functor h. 1

LEMMA 2: There exists an a € h,—1(0C) such that for any compact subset K
of R* containing 8C the properties a € kerh,_1(8C — K) and C C K are
equivalent.

Proof: We consider first the case where C is a PL-submanifold of R* and
then let @ = [0C] be the element generated in h,_1(8C) by 8C. Clearly,
a € kerh, 1(0C — C). Moreover, if K D 8C is a compactum in R* and
29 € C~ K, then we denote by C’ the component of C containing zo and by
9pC' the outer boundary of C’, and find a compact polyhedron L O K which
by a sequence of collapses retracts to a set L’ of dimension n — 1 containing
9,C". We request also that L contains C ~\ C’ and each of the bounded compo-
nents of the complement of C. (Any sufficiently large ball with a ball in ¢’ N~ K
removed will do for L; see [R-S].) Then [8,C"] ¢ ker h,_,(8C — L’) by Lemma
1 and a — [8oC'] € ker h,-1(8C — L). Consequently, a ¢ kerh,_1(8C — L) D
ker h,,—1(8C — K).

In the general case let {Ci: k € N} and {Dr: k € N} be sequences of PL-
submanifolds such that |J{Cx: k € N} = intC, (\{{Di: k € N} = C and
Cr C int Cr4y C Dpyy C int Dy for each k € N. For every k € N take an
ar = [0Ck] € hn—1(8Ci) as above and write Ex for D ~intC and by for
hpn-1(8Ck — Ei)(ax). It is easy to see that h,_1(Ex4+1 — Eix)(bek+1) = be. As
8C = ({Er: k € N} there is an @ € h,,_1(8C) such that h,_1{0C — Ei)(a) =
by, for every k. Then h,_1(Ex — Di)(by) = hp—1(8Cr — Dg)(ax) = 0 for every
k, and hence h,_1(8C — C){a) = 0. Conversely, if K is a compactum in R
containing C and h,_1(8C — K){a) = 0 then, Vk € N,

0= hn_l(aC KU Ek)(a) = hn—l(Ek — KU Ek)(bk)
= hn_l(ack — KU Ek)(ak).

Consequently, KUE), D Ci D C; whenever k > [. Since ([{Ex: k> 1} =0C C K
we get K D C) for.every I. Hence K D |JC,UdC =C. |

Proof of Theorem 1: Let us consider the set

5=U{F(x)x{z}::v€C}CYxR".
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We let p: C - Y and ¢ Y x R* — R" denote projections and write ac
for ¢~1(0C) 0 C. Since F is n-acyclic q|6’ has n-acyclic point-inverses; thus by
Vietoris’ theorem An—1(q|C): hn—1(C) = hp-1(C) and hn_ l(qiaﬁé’) - 1(56’)

hn—1(8C) are 1somorphlsms Let a € h,_1(9C) be as asserted in Lemma 2 and
G € hpo 1(80) correspond to a under the isomorphism h,_ 1(q|t90)
then a € kerhn_l(aC — C). Letting b denote the image of & under
hn-1(p|C: OC — F(8C)) we infer that b € ker h,_;(F(8C) — F(C)) and
hence b = 0 by Lemma 1.

Now consider the compact subset Z of Y x C,

Z = J{{y} x Gw)}:y € F(3C)} > 8C.

The projection Z — F(8C) has n-acyclic point-inverses. Applying Vietoris’
theorem again we infer that the image of @ in h,_1(Z) is mapped to b under
the isomorhism h,_1(Z — F(8C)) and thus equals 0. Since a = h,_1(g)(a) it
follows that a € ker hy,1(8C — q(Z)). The properties of a ensure that ¢(Z) > C
and so there exists a point yo € F(JC) such that z¢ € G(yo). |

In what follows we write conv P for the convex hull of a set P C R".

Remark 2: Carathéodory’s theorem [Ro] asserts that if z € conv P then z €
conv Py for some subset Py of P which is affinely independent and hence of
cardinality < n + 1; this implies that conv P is compact whenever P is. |

COROLLARY 1: If F: C — Y is as above then there exists a set Cy C 8C and a
point yo € Y such that Co C F~1(yo) and xo € conv Cp.

Proof: Let G(y) = conv(F~1(y)N8C) for y € F(C). One shows in a straight-
forward manner that G is u.s.c. Hence, we may take Cy = F~1(yo) N 8C, where
1o is given by Theorem 1. [

Remark 3: The above Corollary remains valid if the operation A + conv A is
replaced by any other one A — co A which is n-acyclic, u.s.c. and defined on
a sufficiently large family F of compacta; by this we mean that the following

conditions are satisfied:

(i) For every A € F the set coA C R" is compact and satisfies h(co A) = 0
and coA D A.
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(i) If {Ag,A1,...} € F and |JA; x {1/i} U Ay x {0} is compact, then
Uco A; x {1/i} U co Ag x {0} is compact.

(ili) A € F whenever both A is compact and A C F~}(y)NdC for somey € Y.
]

Remark: Theorem 1 remains valid if F is defined only on 8C, rather than
on C, and the condition dim(F(C) F(8C)) < n — 1 is replaced by the fol-
lowing one: h,—1(F)(a) = 0 for some a € h,,_1(8C) as asserted by Lemma 2.
(Keeping notation of the proof of Theorem 1, h,_(F) is defined as
hn-1(P|OC) © (hn-1(g|dC))~}; then hn_1(F)(a) = b.) The above condition is
satisfied e.g. when dim(F(0C)) < n —2. |

In Corollary 1, one may always take for Cy a set of cardinality < n + 1; see
Remark 2. In general this inequality cannot be improved; to see this consider the
natural simplicial map of the barycentric subdivision of an n-simplex A onto the
join of the barycenter of A and of the (n — 2)-skeleton of A. In the most intuitive
special case below one can however decrease the cardinality of Cp significantly,
reducing convex hulls to segments:

ProPOSITION 1: If f: C — Y is a continuous function and Y is an (n — 1)-
manifold, then there exist z',xz" € 8C such that f(z') = f(2") and zp €
conv{z’,z"}.

Proof: We consider first the case where C is a PL-manifold with boundary and
zo € int C. Let B be a n-ball in R* such that xg € int B C B C int C. The radial
(with respect to o) projection 7: 8C — 9B induces a nonzero homomorphism of
(n — 1)-homology groups with coefficients Z;. f|0C is extendable over C' and so
induces the trivial homomorphism of (n — 1)-homology groups with coefficients
Zy. By a generalization of the Borsuk-Ulam theorem due to J. Oledzki (see
[O], Theorem 3.2]), there exist z’,2” € dC such that f(z') = f(2") and n(z’)
and 7(z") are antipodal points on 8B. Then the segment joining =’ and z”
contains xg.

In the general case either zp € C, and then we take 2’ = 2" = ¢, or for
every integer k we consider a compact n-manifold with boundary, Cj, such that
xo € int Ci and 8C, lies in the 1+-neighbourhood of 8C in C. Let z}, and z} satisfy
the assertion with C replaced by C). Taking limits of converging subsequences
gives the desired points z’, z". ]
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Remark: In the case Y = R""! the above statement was established in [Si]
(for n < 3) and in [Jo] (arbitrary n). |

Question: In Corollary 1 assume additionally that F' is single-valued and Y
is an (n — 1)-dimensional polyhedron. Under what conditions on ¥ can Cy be
taken to consist of at most of r points, where r < n is given? Is the inequality
maxycy rank H*~1(Y,Y “{y}; Z) < r a sufficient condition? |

2. A separation theorem for families of convex functions and a system

of inequalities

Here we use results of §1 to prove the result on separation of functions outlined in
the introduction and derive from the latter Proposition 2 needed in §3. Separation
theorems for families of functions were present, sometimes implicitly, in several
papers on game theory (including ones on related topics; see [Bl] and [So]) and
we hope our result may have some further applications to this theory and be also
of independent interest. The reader aiming mainly at the application to section
3 can however pass directly to the formulation of Proposition 2 and then to the
Appendix and skip the theorem.

In this section P and @ denote certain fixed compact convex sets in an
Euclidean space, [P] and [Q] their affine spans and £ = £(Q) the (dimQ + 1)-
dimensional Banach space of all affine functionals on [Q]. We also fix a family
{bv}velp) of real convex functions on [Q] which is continuous (i.e. the induced
function on [P] x [Q] is continuous). We say that a ¢ € L separates (resp.
tightly separates) a given member b,, of such a family from a function a: Q — R
ifa < p|Q < b,|Q and ¢ supports b, at some point g of Q (resp. such that, more-
over, ¥(q) = b,(q) whenever ¢ € L separates b, from a); here, supporting means
that the graph of ¢ is a supporting hyperplane for the epigraph of b, at (g, b,(q)).

The main result of this section is:

THEOREM 2: Suppose additionally that P is a finite polyhedron of the same
dimension as @, and

(1) VT > 0 3M > 0 such that |jvy — va|| < M whenever 3¢, p3 € L support-

ing, resp., by, , by, at points of @ and such that ¢; — ¢, is a constant in
(-T,T).
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Then, given pp € P and a: Q — R with b,{Q > a Yv € [P), either b,, may
be separated from a or there exist a set V C [P] and a ¢ € L such that, with

r: [P] — P denoting the nearest-point retraction, we have
(2) po € convr(V) and, Vv € V, ¢ tightly separates b, from a.

Remark: (a) The additional assumption that P be a polyhedron is irrelevant,
provided pg € int P. (We skip the proof.)

(b) The sole reason for requesting that the functions b, be defined on [Q],
rather than merely on @, is to make supporting at points of 9Q well defined.
The following lemma and its proof show that for locally equi-lipschitz families
{by: @ = R},¢[p) the formulation of the theorem may be left intact if one inter-
prets "¢ supports b, at ¢ € @” in the preceeding definitions as ¢ € conv ¥{v, q),
where ¥ is defined below: 1

LEMMA 3: Let {b,},¢[p) be a continuous family of real convex functions on Q.
Then the following conditions are equivalent:

(a) There exists a continuous family {b,: [Q] — R},¢(p] of convex extensions
of the b,’s;

(b) The family {b,}.¢(p) is locally equi-lipschitzian;

(c) There exists a continuous family {b,: [Q] — R},e[p) of convex extensions
of the b,’s such that for any other such a family {51,}1,6[;)] fapel
supports a certain E,, at a point q € Q, then it supports b, at q.

Proof: To show that (b) implies (c) consider the multifunction ¥: [P} x @ — £
defined by:

¥ = closure of {(v,q,¢) € [P] x int Q X L: ¢ supports b, at ¢}

and for (v,q) € [P] x [Q] let Zu(q) := sup{¢(q): ¢ € ¥(v,q’) for some ¢’ € Q}.
[ |
The proof of the theorem splits into the following steps:

I: An additional claim and additional assumptions. Applying a vertical shift
we may assume that a > 0. Let T > 0 be such that

(3) a(Q)c(0,T).
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We will prove the result with the following assertion added:

(4) each vector in V has norm < R, where R > 0 is independent of py and of
a (as long as (3) holds).

It suffices to prove the result so altered in the special case where a is piecewise-

linear. In fact, if (a,) is any sequence of pl-functions satisfying
a—1/n<a, <a and a,(Q)C (0,T), Vn,

then the sequence formed of solutions to the problem with a replaced by a, has
an accumulation point which does the job for the original data. Similarly, we
may restrict our attention to the case where py ¢ OP.

Thus we assume we are in the special case described and set:
A=conv{(g,t) e @ xR: t<a(q)} and @(q)=sup{t: (q,t) € A}.

Then, A is a convex polytope and @ is the concave envelope of a. With S =
{g € Q: (¢,a(q)) is a vertex of A} we have

(5) |S] < 0o and @(s) = a(s) < by(s),Yv € [P], Vse€S.

II: Introducing a certain multifunction. This part is influenced by S. Sorin’s
considerations of a family of functions of a single real variable; see pp. 201-203
of [So]. We define for v € [P]:

2(v) = maxgeq(@lg) — bu(q))-
This is a continuous function and, by (3) and the inequality b,|@Q > a > 0,
(6) z<T.
For v € [P] we write:
®(v) = {¢ € L: ¢ separates b, + z(v) from a}.

Then ®(v) # 0 by the separation theorem [Ro] and ® takes values in non-empty
convex compacta and is u.s.c. We’ll show that

(7) If p € ®(v) and 2(v) > 0 then |{s € S: o(s) = a(s)}| > 2.
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To see this fix a ¢ € Q such that @(q) = b,(q) + z(v) and note that (5) and the
assumption z(v) > 0 force ¢ ¢ S. Therefore, the smallest face of A containing
(g,@(q)) has at least 2 vertices, and they all lie on the graph of .

It follows from (7) that ®({v € [P]: z(v) > 0}) is a subset of

H= U{{ap € L: p(s;) = a(s;) for i =1,2}: 51,82 € S, 81 # 82},

a finite union of codimension two hyperplanes in £, and hence is of dimension
< dim(Q) — 1. (Although this is not needed later we note that the set considered
is actually contained in the (dim @ — 1)-skeleton of the canonical CW-subdivision
of the space {y € L: ¢ > @ and ¢(s) = @(s) for some s € S}, and that the latter
can be shown to be homeomorphic to a dim @-cell.)

I1I: Completing the proof. If z(py) < 0 then we are done by the standard
separation theorem for convex sets [Ro]. We hence assume z(po) > 0 and define
for every compact set K C [P]:

coK ={r(v)t+v(l —t):v e K andt € [0,1]} U conv r(K).

Then coK is deformable to convr(K) and thus is contractible. Applying
Remarks 1 and 3 with

C = closure of {v € [P}: ||v|| < Rand 2(v) > 0},

where the value of R will be chosen later, we get a set V C [P] and a ¢ € £ such
that po € convr(V) and:

(8) ¢ € M{B(v): ve V)

(9) for each v € V, either z(v) = 0 or ||v|| = R and z(v) > 0.

By (8) and our definitions (2) holds whenever no v € V satsfies ||v|| = R. Hence
it remains to show that if R exceeds a certain number {not depending on a and
on po) then |jv|| < R, Vv € V.

To this end suppose vp € V satisfies ||vg|| = R and write w(v) := v — r(v)
for v € [P] and W(F) := {w(v): v € r~}(F)} for F C P. Let F be a collection
of open faces of P such that | JF is contained in no proper face of P. Then
({W(F): F € F} = {0}, so for every collection {w} U {wr}rer of non-
zero vectors satisfying wp € W(F)VF € F there exists an F' € F such that
Z(w,wg) > a, where a is an angle in (0, 7/2) that depends only on P. (This is be-
cause the unit sphere is compact and there are only finitely such families .) Now,
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since pg € int PNconvr(V), the set (V) is contained in no proper face of P and
there exists a v; € V such that either Z(w(vo), w(v1)) > @ or v1 € int P. With
D: = sup,ep [pl| we have [Juw(vr) — w(vo)]| > [lw(vo)] sin(a) > (R — D)sin(e)
and

llvx = voll 2 (R — D)sin(a) — 2D.

Let @;: = ¢ — z(v;); then @; supports b, and |z(v1) — z(vo)| < T, by (6) and the
fact that z(v;) > 0. Hence the desired conclusion follows from (1). ]

We now prove the result on a system of inequalities needed in section 3. Below,
I and K are finite sets and A := A(K); then [A], the affine span of A in R¥,
equals {x € RX: - e = 1}. In the subsequent proofs we sometimes canonically
identify vectors in REK with restrictions to [A] of the functionals they induce, and
thus R¥ with the set £ of all affine functionals on [A] and scalar multiples of e
with constant functions on [A].

PROPOSITION 2: Let a: A(K) — R and h: A(I) x A(K) — R be continuous
functions such that

(10)  h is affine with respect to the variable o € A(I),Vp € A(K), and
(11) Vp,q € A(K) o € A(I) such that h(o,p) - q¢ > a(q).

Then, given py € A(K), there exist a set Py C A(K) of cardinality < |K| and
vectors o, € A(I) (p € Py) and ¢ € RX such that

(12) ¢ g > a(g), Yg € A(K);
(13) po € conv Py;

(14) Vp € Py Vk € K we have * > h*(0,, p), with equality occurring in place
of > whenever p* > 0.

Proof: For p € A we let
bp(q) := maxh(o,p) - ¢ = maxh(ei,p) - ¢ for g € [A].
We claim that (cf. [So, p. 203]):

(15) If a ¢ € L supports b, then ¢ = h{o,p) for some o € A(I).
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In fact, each maximal proper face of the epigraph B of b, is contained in a
hyperplane of R¥ x R given for some i € I by {(g,t) € [A] x R: t = h(e;,p) - ¢}
Take an z € BN {(q,9(q)): ¢ € [Q]} and let Iy denote the set of all indices
i € I corresponding to maximal proper faces of B that contain z. Then by a
reformulation of Farkas’ lemma [Ro] it follows that for some o € A(lp) C A(I)
we have p = 3., o(i)h(e:, p) = h(o,p), as desired.

For k € K let wy, = |K|~'e — e, be the outward vector normal to the maximal
proper face of A opposite to ex. The space E: = [A] - [A] = {r e RX:z-e = 0}
is a union of |K|-many cones, each generated by all vectors wy, but one. Hence
each v € E can be uniquely written in the form Y Apw;, where all the \;’s are
> 0 and one of them is 0, and we define Lv = Y Arex. On any of our cones L
is an isomorphism onto a “quadrant” {x € R¥: z > 0 and z* = 0}. It follows
that limy,_yrjoo [|Lv" — Lv"|| = 0o, whence the family {b,},e[a] defined by
by := br(y) + L(v — r(v)) satisfies condition (1). Applying Theorem 2 and (15)
we get a set V C [A] and a ¢ € RE satisfying (12) and such that py € convr(V)
and

(14) Vv €V o, € A(I) with ¢ = h(oy,7(v)) + L(v — r(v)).

We write Py = r(V) and for every p € Py choose a v, € r~}(p) NV and write
0p = 0y,. It remains to show that if v € V and k € K satisfy (r(v))* > 0 then
(L(v — r(v)))* = 0. However, we then have v — r(v) = SApwyg: where all the
Ar’s are > 0 and Ax = 0, so using the definition of L completes the proof. ]

APPENDIX. A more direct proof of Proposition 2 can be given as follows. We
write for v € [A] :

7(v)(k) := max(v¥,0)/ Z{v': v' >0} and u(v)(k) := | min(v*,0)];

by(q) := max, h(o,r(v))- g+ u(v)-¢ for g € [A].

Suppose we showed the existence of a set V C RX and of a ¢ € £ such that
po € convr(V), a < ¢|A and ¢ supports b,, Vv € V. By (15) we then have

(14)" Yo €V 30, € A with ¢ = h(0y,7(v)) + u(v).

Thus letting Py = 7(V) and 0, = o,,, where v, € r~}(p) NV for p € Py, we
easily see that (12)-(14) hold (note that u(v)(k) = 0 if r(v)(k) > 0).
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To get a pair (V, ¢) as above follow the proof of Theorem 2 taking P = Q = A.
Only the last paragraph of that proof needs to be simplified and modified as
follows:

We show that it suffices to take R = max{||v||: v € [A] and infx v(k) > —2T1},
where T1 := T + max,p ||h(o,p)]. (We have R < oo because v-e = 1 for
v € [A].) In fact, suppose ||vg|| > R for some vy € V' and let [ € K be such that
vo(l) < —2Ty; then u(vg)(!) > 2T;. By (8) and (15) we infer that

()™ Yv eV Jo, € A with ¢ = h(oy, r(v)) + u(v) + z(v)e.

Hence (1) > Ty, by (9). However, as pg € convr(V)Nint A there also exists a
v € V such that r(v)(l) > 0; then u(v)({) = 0 and ¢(l) < T} by (14)" and (6), a
contradiction. ]

Remark: Alternatively, one can introduce in a standard fashion variables u* > 0
that allow to control (14):

A ={(p,u) € A xRK: 4* >0 and p*u* = 0 for all k € K}.

It turns out that A is homeomorphic to R! for | = |K| - 1. (In fact, a homeo-
morphism A — {z € R¥: z-e = 1} may be given by (p,u) — (1 + |jull1)p — u
and its inverse by v — (r(v),u(v)); we skip the verification.) This allows one to
apply Theorem 1 and to proceed as above, with A playing the role of [A] and
the projections A - Aand A - RX playing the role of the functions r and u,
respectively. 1

3. Undiscounted repeated two-person games of incomplete

information on one side

One-shot games of incomplete information on one side were first introduced by
J. Harsanyi [H] and the infinitely repeated ones of this type by R. Aumann and
M. Maschler [Au-Mal]; further basic results relevant to this section were obtained
in [Au-Ma-St] and [So]. A brief description is as follows. A game between two
players named A and B proceeds in infinitely many successive stages. In the
0-th stage a k is chosen from a finite set K of “states of nature” according to
a probability distribution pg € int A(K). In any subsequent stage each of the
players selects a “pure action” from a finite set I (for A) or J (for B), gaining a
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stage-payoff Ax(i,7) (for A) or Bi(4,j) (for B) which depends only on the pure
actions 7 € I and j € J selected in this stage and on the “true state of nature” k,
chosen at stage 0. (The game is undiscounted because there is no geometrically
decreasing weighting of the consecutive stage-payoffs.) The families {A; };cx and
{Bi}iex and the distribution pg, as well as the rules of the game, are given to the
players before the game starts as their initial common knowledge. At any stage
the players also know the pure actions both of them took on preceding stages
and A (but not B) knows the outcome k € K of the 0-stage.

In this section we prove that the games above admit an equilibrium, and in
fact one of a very special type studied in earlier work of other authors. We
describe this equilibrium later but at this moment we would like to say that
its nature is such that for the players to have a chance of making use of it, it
is natural to assume that pre-play communication is admitted by the rules of
the game. However, even if inaccessible, this equilibrium remains to be one if
no communication is permitted, and we leave aside the question whether and
how can the players actually reach an equilibrium with pre-play communication
prohibited.

For a mathematical setup, let I* = A(J) and J* = A(J) be the spaces of
mixed strategies of the respective players and let A denote A(K). A behaviour
strategy of a player is a sequence of functions: (K x (I x J)* — I*)n>o for A
and ((I x J)™ — J*)n>o for B. (See [Bl], [Ku], [Au-Ma-St].) Thus for each stage
a behaviour strategy just gives a recipe determining a probability measure on the
set of player’s pure actions based on the appropriate part of the past history of
the game; it shouldn’t be confused with elements of the sets I or J or I* or J*
(also called “strategies” or “mixed strategies”), A mixed behaviour strategy
is* a finite list of behaviour strategies of a player and a probability measure
on the list’s indexing set; for player .4, this measure may depend on the true
state of nature. (After stage 0, the player under consideration performs a lottery
according to this probability distribution and decides to apply throughout the
resulting behaviour strategy. By a general theorem of H. W. Kuhn ([Ku], [Se])
or by a direct argument the use of such strategies can be eliminated in favour of
behaviour strategies, but doing so would complicate our exposition.)

Let H = (I x J)*®. A pair of behaviour strategies, s for A and ¢ for B,

* Qur terminology and definitions differ slightly from ones used in other sources
(cf. [Se]), but lead to equivalent notions.



Vol. 92, 1995 EQUILIBRIA IN GAMES 15

determines on K x H a probability measure p, ¢ such that the probability of the
K-coordinate to be [ is po(!) and, conditionally on the previous coordinates, the
measure on the n-th factor of (I x J)* is the product of the measures determined
at the n-th stage by the strategies in question, given the previous information.
This definition extends to the case where s and ¢ are mixed behaviour strategies
to yield a measure p, ; defined on K x L, x Ly x H, where L, and L, are the
indexing sets for the lists of strategies for s and ¢, respectively. Given such a pair
(s,t) one may consider the sequence of arithmetic means of the consecutive stage-
payoffs of a player C = A, B, integrated with respect to the induced conditional
measure on a given Borel subset S of K x Ly x L; x H; its limit superior (resp. its
limit, if existing) will be called C’s valuation of (s,t) on S and denoted V2 (s, t)
(resp. EZ(s,t)). For z in the disjoint union of the sets K, L, and L, we agree
V# to mean VCS , where S is given by the requirement that the corresponding
coordinate be z; also, we drop the superscript S if S = K x L, x Ly x H and
identify K x Ly x Ly x H with K x Ly x H (resp. with K x H) if L, is a singleton
(resp. if L is, too). We have VCU S < max, VCS".

For p € A we write A(p) = Y., cx P*Ax and B(p) = Y, P*Bx and, using
the min-max theorem, we define a(p) and b(p) by the formulas:

= incA d b(p):= mi B(p)r = in o B(p)r.
a(p) := max min o A(p)r and b(p) min max o B(p)7 = max min 0 B(p)r

We now proceed to describe S. Sorin’s notion of an “independent and 2 safe
joint plan equilibrium”, which is a specification of a weakened form of the “joint
plan equilibrium” of R. Aumann, M. Maschler and R. Stearns. The discussion
below and in the appendix to this section is motivated by that in [Au-Ma-St)
and in [So] but differs in being independent from the 0-sum case studied in [Au-
Mal] (a paper nearly inaccessible in its original edition but to be reprinted in
[Au-Maz2]) and in taking closer to the surface the role of condition (E1) to follow,
crucial for both the need and the possibility of using results from §2. In general,
by an equilibrium one understands a pair (s*,t*) of mixed behaviour strategies
such that E4(s*,t*) and Ep(s*,t*) exist and satisfy E4(s*,t*) > V4(s,t*) and
Eg(s*,t*) > Vg(s*,t) for all behaviour strategies s,¢ of respective players. (A
result of S. Hart [Ha| gives a complete characterization of all equilibrium valuation
pairs for this game; see also [Au-Ha].) An independent and 2 safe joint plan
is a very specific kind of an equilibrium which may be described as follows.

B starts by finding, if it can, a vector ¢ € R¥, a finite subset Py of A and for
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every p € Py elements o, € I*, 7, € J* and A, € (0,1] such that
(E1) po =3 pep, Appand 3 cp Ap =1;

(E2) p-g>alg) YgeA;

(E3) oB(p), > b(p), VpEP Vo€l

(E4) ok > opAr, YV p € Py YV k € K, with = occurring instead of >
whenever p* > 0.

B also finds a bijection f of P, into a finite power of I (say, into I'; one may
assume |I| > 2) and for each p € Py takes a function h, = (h],hJ): N — I x J
such that

limp,—.oo[{m: m < n and hy(m) = (i, )} /n = 0p()7p(5), V(i 5) € I x J.

B chooses to convey all this structure to A along with the following description
of a pair (s*,t*).

A’s mixed behaviour strategy s* is a combination of certain behaviour strate-
gies s, (p € Py) taken with weights zf = A,p*/pf, where k is the true state of
nature. (Le., A chooses after stage 0 a p € F; following this distribution z; on Py
and decides to use s, throughout.) Here, s, demands that A’s move at a given
stage m be f(p)(m) if m < I and be hl(m) if m > | and B followed h in all
preceeding stages > [, and that it be taken in accordance with a fixed probability
distribution o, € I* for which max,e - 0, B(p)T = b(p) if neither of the above
“if” conditions is satisfied. B’s behaviour strategy t* is to take arbitrary moves at
the first [ stages and at any next to play according to hg if there exists a (unique)
p € P, such that the sequence of the first I moves of A gave a point f(p) and
A followed h{, in all stages > [ played up to then, or else to play according to a
strategy t,, given by the following consequence of a general result of D. Blackwell
([BL, p.6], cf. {Au-Mal] and [Au-Ma-St] for this particular application):

LEMMA 4: Given ¢ € RK satisfying (E2) player B has a behaviour strategy t,
such that for every behaviour strategy s of A, every k € K and every finite
sequence x € (I x J)* (n € N) one has ij‘;”](s,t@) < *, where [k, z] denotes
{k} x {(i1, 1 )ien € H: (31,41, ooy bny Jin) = T}

It can be shown that the pair (s*,t*), if it exists, is an equilibrium; see the

appendix to this section and the references given there for a discussion making
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the role of conditions (E1) to (E4) easier to grasp. (These conditions correspond
to what one gets by combining (i)-(iii) from [So, p. 197] with the requirement of
[So, p. 199].) To establish the existence we need

LEMMA 5: For every ¢ > 0 there exists a continuous map g: D — J* such that
oB(p)g(p) > b(p) — ¢ for all (o,p) € I* x A.

Proof:  Write v(r,p) = min, e B(p)r and T(p) := {r € J*: v(r,p) = b(p)};
then v: J* x A — R is continuous and concave in J* for fixed p. Since b also
is continuous, there exists a § so that ||p’ — p|| < ¢ implies ||b(p") — b(p)}| < &/2
and |v(7,p") — v(1,p)| < ¢/2 for every 7 € J*. Create a simplicial subdivision
A, of A with mesh diameter less than §. Create a piece-wise linear mapping
g: A — J* so that if p is a vertex of A, then g(p) is any member of T(p); it
follows easily that g is as desired. (This Lemma is a special case of a much more

general topological statement, see [Hav].) ]
Now we are able to prove:

THEOREM 3: Every undiscounted infinitely repeated two-person game of
incomplete information on one side has an independent and 2 safe joint plan

equilibrium.

Proof: We need to find a system satisfying (E2)-(E4) and such that py €
conv Py. Given ¢ > 0 let g be as asserted in Lemma 5. Applying Proposi-
tion 2 with h*(a,p) = 0 Arg(p) for k € K we get a set Py with |Py| < || and
vectors: ¢ € RY, o, € I* and 7, := g(p) € J* (p € Py) satisfying all the prop-
erties needed. except that b(p) is replaced by b(p) — ¢ in (E3). Taking a cluster
point of these approximate solutions as ¢ — 0 will give the system we seek, but
its existence needs commenting for the case of the ¢’s (the remaining elements
of the systems belong to certain apriori given simplices and thus have converging
subsequences). However, as py € int A N conv Py, for every k € K there exists a
p € Py with p* # 0. Hence condition (E4) yields a bound on ||¢||o depending
only on the payoff matrices, thus locating the ¢'s in a desired compact set. ]

Appendix: The equilibrium property of independent and 2 safe plans

To make the role of condition (E1) more transparent we assume in greater gen-
erality that (E1) and the equality zx(p) = App*/pE are dropped and that an
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arbitrary system of vectors x; € A(FPp), k € K, is used to define the pair of
strategies as described before. We keep assuming (E2)-(E4), with “whenever
p* > 0" in (E4) replaced by “whenever zx(p) > 0”.

We first note that for all (k,p) € K x P and any set S C {(k,p)} x H the
deterministic strategies h] and h; satisfy:

(i) EZ(h!,h)) = 0,Cr1y, where C=Aif C=Aand C=Bif C=B.
Next, we fix a k € K and a behaviour strategy s of A and define
Sk := {k} x {h € H: h is such that B was given a cause to apply t,};
then
(i) V(s t7) < o

(We postpone the proof.) Modulo a p, ¢~-measure 0 set, Uy := {k} x H~ Sk
is a disjoint union of the sets Ux(p) := {u € {k} x (I x J)*: the first ! of the
I-coordinates of u give f(p) and the I x J-coordinates of u from stage ! + 1 on
are described by h,}. Letting yx(p) = ps,e+(Us(D))/ st~ (Ui) we get by (i) and
(E4):

B (s,t*) = Spuk(p)op AxTy < Spye () = @i

If s = s* then above we have = in place of < and 5 ¢+(Sk) = 0. Hence
VA(s,t*) < max(V*(s, t*), EQ* (s, ")) < i = E5(s*,t%)

and Va(s,t*) < E4(s*,t*) by the arbitrareness of k.

To get information on V(s*,.) write v, for Xxpo(k)zx(p), the total probability
of A’s lottery to yield an outcome p € FPy. Given such an outcome, the conditional
probability of the true state of nature to be k is p(k) := po(k)zx(p)/vp; here
vp > 0 since pp € int A(K). We fix p € Py and a behaviour strategy ¢ of B and
denote by p the relative measure induced by ps-, on K x {p} x H. We also
write T = |JT,, where T, := K x {p} x {h € Hp: h(m) # hp(m) for some m €
N with ! < m < n}. The remaining discussion rests on the fact that, for each
ke K:

(i) On T the probability of the true state of nature to be k is p(k),

(iv) VZ(s*,t) < max.¢ - o, B(p)T.
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Assuming (iii) and (iv) we note that (iii) keeps being valid with T replaced by
S := K x {p} x H~T, whence E§(s*,t) = S¢p(k)o,Bx7p = 0, B(H)7, by (i).
When ¢t = t* we have u(T) = 0, so by (E3) we infer that if § = p then

VE(s*,t) < max(E§(s*,t), V4 (s*,1)) < 0,B(p)7p = EB(s*,t*).

Thus (s*,t*) is an equilibrium whenever $ = p Vp € Py. Except for the justifica-
tion of (ii)~(iv), the discussion may be concluded by invoking the easily verifiable
lemma (for the “only if” part set A(p) := v, for all p € Py):

LEMMA 6: The condition p = p Vp € Py holds if and only if there exists a
A € A(Py) such that pg = L,A(p)p and the vectors xy, € A(Py) satisfy zx(p) =
A(p)p(k)/po(k), Yk € K,Vp € Py.

To demonstrate (iii) and (iv) we fix n € N, split T, as K X {p} x X x Y, where
X is the image of T, under the projection to the product of the first n factors of
(I x J)*, and from the definition of y read off the conditional measures u’,‘,’z on
Y, pf on (IxJ)* and px on K such that p = [ [y pp"duk (z)dpk (k). Then,
px is given by p and [, Brdugx = B(P). With (im, jm) denoting the projection
of K x P x H onto the m-th factor of H = (I x J)°°, the mean value on T,, of B’s
m-th stage payoff satisfies for m > n (we treat I, J as subsets of A(I), A(J)):

Tnm = (H(Tn))_l/ imBkjmdﬂ = (,U(Tn))_lj / / imBkjmd/JYdﬂXlelK~
KJXJY

n

The strategies t and s*|K x {p} x H = s, are independent of k; thus so are the
measures pig := |, X u’{;xdu’)}(x). Also, with respect to any of the measures u'f,’z
the random variables i,, and j,, are independent and i,, has distribution a;,.
Thus a := fXxY lduy and 1 := fXijmduk/a € J* are independent of k and
integrations above yield [, [, equal to ao),Bir and r,, , = (Tn) " tao, B(P)r.
Similarly, for the characteristic function g of {(k,p)} x X x Y we get an grdu =
p(k)a and (hence) u(T,) = J1, 1dp = a. Combining these we get (iii) and (iv)
(first with T, in place of T, where however n is arbitrary).

Inequality (i) follows similarly, by using a filtration of Sj analogous to the
filtration of T' by the T,,’s and then estimating

/Y”'mAkde:u'l)cf,m(y) = V_}‘(k,x)](sat<p) < Pk

in the partial integration. |
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Remark: The result of Blackwell [Blj admits for establishing additional
properties of the strategy ¢, of Lemma 4 and thus also of the pair (s*,t*).

The interested reader should consult also [Au-Ma-St} and [So]. ]
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