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ABSTRACT 

The exis tence of a Nash equi l ibr ium in the undiscounted  repea ted  two- 

person game of incomplete  informat ion on one side is es tabl ished.  The  

proof depends  on a new topological  resul t  resembling in some respect  the  

Bor suk -U la m  theorem. 

Introduct ion  

The motivation for considering results of this note comes from game theory, and 

specifically from the problem, posed in 1968 by R. Aumann, M. Maschler and 

R. Stearns [Au-Ma-St], whether any undiscounted infinitely repeated two-person 

game of incomplete information on one side has a Nash equilibrium. (See also [Fo, 

w A short description of these games and of the necessary notions is given in 

w In this context these authors defined and studied a certain class of potential 
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equilibria, which they called "joint plan equilibria". In 1983 S. Sorin considered 

a modification of a special case of the joint plan equilibrium and proved that  

his "independent and 2-safe" joint plan equilibrium exists whenever the game 

has only two states of nature. In the present note we settle in the positive the 

problem stated above by proving the existence of such an equilibrium for games 

with an arbi trary number of states of nature. 

Our proof is a generalization of Sorin's 1983 approach. I t  depends on a topo- 

logical result; this is not a surprise, as several proofs in game theory depend on 

various fixed-point and related theorems. Here we need however a new result, 

which in its special case can be stated as follows: If x0 is a point of a compact set 

C C R " and f :  C ~ Y is a mapping into a space of dimension n - 1, then in the 

boundary of C there exists a set Co mapped by f into a singleton and containing 

x0 in its convex hull. We say this is a s tatement of Borsuk-Ulam type, as in 

the special case where C is a disk and Y an Euclidean space the Borsuk-Ulam 

theorem shows that  one may take for Co a set consisting of 2 points. In fact we 

show that  a result of Ol~dzki easily implies that  Co may be be taken to consist 

of 2 points whenever Y is a manifold; however for our applications it is essential 

to avoid assuming the latter and also to allow ] to be a multifunction. (By 

Carath6odory 's  theorem one can always replace Co by its subset consisting of 

< n + 1 points, but in general we do not know when this bound may be lowered.) 

The paper  is organized as follows. We treat  the topological results in w and 

undiscounted repeated games in w In w we solve a certain system of inequalities 

needed in w to prove the existence of equilibria. This is closely related to proving 

in w a more general Theorem 2 giving conditions on a family {b~: Q --~ R}veRn 

of convex functions and on a convex set P C R~ which suffice for the following 

to be true: given a po E P and a function a: Q -o R such that  a _< b. k/v E R'~, 

there exists a set P0 C OP containing Po in its convex hull and vectors Vp normal 

to OP at p (p E P0) such that  an affine functional on R n separates a from any of 

the functions bp+,p, p E Po. Theorem 2 is established by using results of w and 

is a geometric counterpart  to the game-theoretic statements of this paper. 

Notation: If K is a finite set then IKI denotes its cardinality, R/" and R IKI the 

euclidean IKI-space, equipped with the standard norm, ek the coordinate unit 

vectors of R K, A(K)  the simplex conv{ek: k E K} and e the vector )--~keg ek. 

The k-th coordinate of a vector y E R K is denoted y(k) or yk. If C is subset of 

an euclidean space then OC and int C denote, respectively, the boundary and the 
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interior of C relative its affine span. All spaces are assumed to be metrizable. 

1. A r e su l t  o f  B o r s u k - U l a m  t y p e  

By a multifunction ~: X --+ Y we understand here a set r C X x Y such that  

for every z E X the set r  := {y E Y: (x, y) e (I)} is nonempty and compact. 

We write r  {x �9 X: (x, y) �9 r  and r  U{r  a �9 A} for y �9 Y 

and A C X. �9 is said to be upper-semicontinuous if r M (A • Y) is compact for 

every compact subset A of X. (This holds whenever r is closed in X • Y and Y 

is compact.) 

Below, we need additional assumptions on the multifunctions we consider. 

The case we have in mind is when they take values in contractible compacta, 

but to treat  this we fix a homology or cohomology functor h defined on the 

category of all compacta and request merely that the multifunctions ~: X --+ Y 

under consideration are n-acyclic, i.e. that  hk(~(x)) = 0 for all k < n whenever 

x �9 X. We need h to satisfy standard axioms on the category of polyhedra and 

to be continuous for inverse limits ([E-S] and [Sp]); also, we request that Vietoris' 

theorem ([Be] and [Sp]) be true for h. Thus h may be the reduced Cech homology 

with coefficients in a compact field or Cech cohomology; we write our proofs for 

homology and they may be dualized easily. 

Setup: In this section we denote by C a compact subset of R'~ of dimension n 

and we fix a point x0 �9 C and upper-semicontinuous multifunctions F: C --+ Y 

and G: F(OC) --+ Rn. 

THEOREM 1: Suppose F and G are n-acyclic and dim(F(C)  \ F(OC)) < n - 1. 

If G(y) D F-l(y)MOC for every y �9 F(OC) then there exists a point Yo �9 F(OC) 

such that Xo �9 G(yo). 

Remark 1: We have dim(F(C)  \ F(OC)) < n - 1  whenever dim F(int  C) < n - 1 .  

I 

For the proof of the theorem we need two lemmas: 

LEMMA 1: I f Y  is compact and Y~ is a dosed subset of Y such that dim(Y \ Y~) 

< n - 1, then hn- l (Y '  ~-~ Y) is a monomorphism. 

Proof." Let (Y, Y')  = ((Yk, Y~), ~r~, N) be an inverse sequence of polyhedral 

pairs such that (Y, Y') is the inverse limit of (Y, Y')  and dim(Yk \ Y~) _< n - 1 
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for every k. By the homology exact sequence we have kerh,~_l(Y~ r Yk) = 

h~(Yk, Y~) = O. Since inverse limits preserve monomorphisms the lemma follows 

from the continuity of the functor h. I 

LEMMA 2: There exists an a �9 hn_l(OC) such that for any compact subset K 

o f R  ~ containing OC the properties a �9 kerh~_l(OC ~ K )  and C C K are 

equivalent. 

Proof'. We consider first the case where C is a PL-submanifold of R '~ and 

then let a = lOCI be the element generated in h~_l(OC) by 0C. Clearly, 

a E kerhn_l (OC ~-~ C). Moreover, if K D OC is a compactum in R '~ and 

z0 E C \ K,  then we denote by C'  the component of C containing z0 and by 

OoC' the outer boundary of C', and find a compact polyhedron L D K which 

by a sequence of collapses retracts to a set L' of dimension n - 1 containing 

OoC'. We request also that L contains C \ C' and each of the bounded compo- 

nents of the complement of C. (Any sufficiently large ball with a ball in C'  \ K 

removed will do for L; see [R-S].) Then [0oC'] • ker hn_ l (0C r L') by Lemma 

1 and a - [OoC'] �9 kerhn_l (OC ~-~ L). Consequently, a ~ kerh~_l (OC "--* L) D 

kerh~_l(OC ~-* K) .  

In the general case let {Ck : k �9 N} and {Dk : k �9 N} be sequences of PL- 

submanifolds such that U{Ck: k �9 N} = intC,  N{Dk:  k �9 N} = C and 

Ck C intC~+l C Dk+l C intDk for each k �9 N, For every k �9 N take an 

ak = [OCk] �9 h~_l(OCk) as above and write Ek for D k \ i n t C k  and bk for 

h,~_l(OCk ~-~ Ek)(ak). It is easy to see that  h,~-l(Ek+l ~ Ek)(bk+l) = bk. As 

OC = A { E k  : k �9 N }  there is an a �9 hn_l(OC) such that  hn_l(OC ~ Ek)(a) = 

bk for every k. Then h ~ - l ( E k  "--* Dk)(b}) = h~_l(OCk ~-~ Dk)(ak) = 0 for every 

k, and hence h~_l(OC "--* C)(a) = O. Conversely, if K is a compactum in R n 

containing OC and h,~_l(OC ~-~ K)(a)  = 0 then, Vk E N, 

0 -= h~_l(OC "--* K U Ek)(a) = h n - l ( E k  ~-~ K U Ek)(bk) 

= hn-l(OCk r g U Ek)(ak).  

Consequently, K U E k  D Ck D C~ whenever k > l. Since N{Ek: k > l} = OC C K 

we get K D Cz for.every I. Hence K D U Cl u OC = C. I 

Proof  of  Theorem 1: Let us consider the set 

= U { F ( x )  x {x}: x �9 C} C Y x R ~. 
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We let p: C --~ Y and q: Y x R" --* R" denote projections and write O-'C 

for q-l(OC) n C. Since F is n-acyclic q[C has n-acyclic point-inverses; thus by 

Vietoris'  theorem h,~-l(qlC): h,~-l(C) ~ h n - l ( C )  and hn-l(q[O'-C): h,~_l(C9-'C) --, 

h, - l (OC)  are isomorphisms. Let a E hn_l(OC) be as asserted in Lemma 2 and 

5 E hn_l(OC) correspond to a under the isomorphism h,_l(q[OC); 

then 5 E kerh,_l(0- 'C ~ C). Letting b denote the image of 5 under 

h~_l(p[OC: OC ~ F(OC)) we infer that  b E kerhn_l(F(OC) ~ F(C)) and 

hence b = 0 by Lemma 1. 

Now consider the compact subset Z of Y x C, 

z = • G(y)}:  e F ( a C ) }  

The projection Z ~ F(OC) has n-acyclic point-inverses. Applying Vietoris' 

theorem again we infer that  the image of 5 in hn_l(Z) is mapped to b under 

the isomorhism h,~_l(Z ~ F(OC)) and thus equals 0. Since a = h , - l ( q ) ( 5 )  it 

follows that  a E kerhn_l(OC ~ q(Z)). The properties of a ensure that  q(Z) D C 

and so there exists a point Y0 E F(OC) such that  x0 E G(yo). I 

In what follows we write conv P for the convex hull of a set P C R'~. 

Remark  2: Carath~odory's  theorem [Ro] asserts that  if x E conv P then x E 

conv Po for some subset Po of P which is affinely independent and hence of 

cardinality _< n § 1; this implies that  conv P is compact whenever P is. I 

COROLLARY 1: I f  F: C ~ Y is as above then there exists a set Co C OC and a 

point Yo E Y such that Co C F - l ( y 0 )  and xo E conv Co. 

Proof Let G(y) = c o n v ( F - l ( y )  n OC) for y E F(OC). One shows in a straight- 

forward manner  that  G is u.s.c. Hence, we may take Co = F-l (yo)  n OC, where 

Y0 is given by Theorem 1. I 

Remark  3: The above Corollary remains valid if the operation A ~ conv A is 

replaced by any other one A ~ co A which is n-acyclic, u.s.c, and defined on 

a sufficiently large family ~" of compacta;  by this we mean that  the following 

conditions are satisfied: 

(i) For every A E j r  the set co A C R n is compact  and satisfies h(co A) = 0 

and co A D A. 
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(ii) If {A0, A1,...} C 9 r and UAi  x {1/i} u A0 x {0} is compact, then 

Uc oAi  x {1/i} u coAo x {0} is compact. 

(iii) A E ~ whenever both A is compact and A C F - l ( y )  MOC for some y E Y. 

I 

Remark: Theorem 1 remains valid if F is defined only on OC, rather than 

on C, and the condition d i m ( F ( C ) \  F(OC)) _< n - 1 is replaced by the fol- 

lowing one: h,~_l(F)(a) = 0 for some a e hn-l(OC) as asserted by Lemma 2. 

(Keeping notation of the proof of Theorem 1, h,~_l(F) is defined as 

h,~_l(pIOC) o (hn_l(qIOC))-l;  then hn- l (F) (a )  = b.) The above condition is 

satisfied e.g. when dim(F(OC)) <_ n - 2. I 

In Corollary 1, one may always take for Co a set of cardinality _< n + 1; see 

Remark 2. In general this inequality cannot be improved; to see this consider the 

natural simplicial map of the barycentric subdivision of an n-simplex A onto the 

join of the barycenter of A and of the (n - 2)-skeleton of A. In the most intuitive 

special case below one can however decrease the cardinality of Co significantly, 

reducing convex hulls to segments: 

PROPOSITION 1: I f  ]: C --~ Y is a continuous function and Y is an ( n -  1)- 

manifold, then there exist x ' , x "  E OC such that f (x ' )  = f ( x " )  and xo E 

conv{x', x"}, 

Proof." We consider first the case where C is a PL-manifold with boundary and 

Xo E int C. Let B be a n-ball in ~"  such that x0 E int B C B C int C. The radial 

(with respect to xo) projection ~r: OC --* OB induces a nonzero homomorphism of 

(n - 1)-homology groups with coefficients Z2. f[OC is extendable over C and so 

induces the trivial homomorphism of (n - 1)-homology groups with coefficients 

Z2. By a generalization of the Borsuk-Ulam theorem due to J. Ol~dzki (see 

[O1, Theorem 3.2]), there exist x~,x" E OC such that  f ( x ' )  = f ( x ' )  and 7r(x ~) 

and ~r(x") are antipodal points on OB. Then the segment joining x ~ and x" 

contains x0. 

In the general case either Xo E OC, and then we take x ~ = x" = x0, or for 

every integer k we consider a compact n-manifold with boundary, Ck, such that  

Xo e int Ck and COCk lies in the ~-neighbourhood of OC in C. Let x~ and xg satisfy 

the assertion with C replaced by Ck. Taking limits of converging subsequences 

gives the desired points x ~, x". I 
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Remark: In the case Y = R n-1 the above statement was established in [Si] 

(for n < 3) and in [Jo] (arbitrary n). | 

Question: In Corollary 1 assume additionally that  F is single-valued and Y 

is an (n - 1)-dimensional polyhedron. Under what conditions on Y can Co be 

taken to consist of at most of r points, where r _< n is given? Is the inequality 

maxy~v rank/~n- l (Y,  Y \{y} ;  Z) < r a sufficient condition? | 

2. A separation theorem for famil ies  o f  co n v ex  fu n c t i o n s  a n d  a s y s t e m  

of inequalities 

Here we use results of w to prove the result on separation of functions outlined in 

the introduction and derive from the latter Proposition 2 needed in w Separation 

theorems for families of functions were present, sometimes implicitly, in several 

papers on game theory (including ones on related topics; see [B1] and [So]) and 

we hope our result may have some further applications to this theory and be also 

of independent interest. The reader aiming mainly at the application to section 

3 can however pass directly to the formulation of Proposition 2 and then to the 

Appendix and skip the theorem. 

In this section P and Q denote certain fixed compact convex sets in an 

Euclidean space, [P] and [Q] their affine spans and s = s the (dimQ + 1)- 

dimensional Banach space of all affine functionals on [Q]. We also fix a family 

{by}re[p| of real convex functions on [Q] which is continuous (i.e. the induced 

function on [P] • [Q] is continuous). We say that a ~ �9 s s e p a r a t e s  (resp. 

t i g h t l y  s e p a r a t e s )  a given member by of such a family from a function a: Q --+ 

if a <_ ~[Q < b,[Q and ~ supports b. at some point q of Q (resp. such that,  more- 

over, r = b,(q) whenever r �9 s separates b. from a); here, supporting means 

that the graph of ~ is a supporting hyperplane for the epigraph of b. at (q, b,(q)). 

The main result of this section is: 

THEOREM 2: Suppose additionally that P is a finite polyhedron of the same 

dimension as Q, and 

(1) VT > 0 3M > 0 such that [Iv1 - v2[[ < M whenever 3~1,~2 �9 Z~ support- 

ing, resp., by1, bv2 at points of Q and such that ~1 - -  ~02 is a constant in 

( - T , T ) .  
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Then, given Po E P and a: Q -~ R with b, IQ >_ a Vv E [P], either bpo may 

be separated from a or there exist a set V c [P] and a qa E E such that, with 

r: [P] -~ P denoting the nearest-point retraction, we have 

(2) P0 E convr(V) and, Vv E V, ~ tightly separates b, from a. 

Remark: (a) The additional assumption that P be a polyhedron is irrelevant, 

provided Po E int P. (We skip the proof.) 

(b) The sole reason for requesting that the functions b, be defined on [Q], 

rather than merely on Q, is to make supporting at points of OQ well defined. 

The following lemma and its proof show that for locally equi-lipschitz families 

{b.: Q - ~  R}ve[p] the fornmlation of the theorem may be left intact if one inter- 

prets "~  supports b, at q E Q" in the preceeding definitions as ~ E conv ~(v, q), 

where g2 is defined below: I 

LEMMA 3: Let {by}rE[p] be a continuous family of real convex functions on Q. 

Then the following conditions are equivalent: 

(a) There exists a continuous family {b.: [Q] -~ R}.e[p] of convex extensions 

of the b. 's; 

(b) The family {b.}.e[p] is locally equi-lipschitzian; 

(c) There exists a continuous family {by: [Q] ~ ]~}ve[P] of convex extensions 

of  the bv's such that for any other such a family {bv}.e[P] i ra  ~ E s 

supports a certain b. at a point q E Q, then it supports -b. at q. 

Proof'. To show that (b) implies (c) consider the multifunction 9: [P] • Q ~ E 

defined by: 

q/ = closure of {(v, q, qo) E [P] x int Q x E: ~ supports b~ at q} 

and for (v,q) e [P] x [Q] let by(q) := sup{~(q): ~ E ~(v,q ' )  for some q' E Q}. 

I 

The proof of the theorem splits into the following steps: 

I: An additional claim and additional assumptions. Applying a vertical shift 

we may assume that  a > 0. Let T > 0 be such that 

(3) a(Q) c (O,T) . 
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We will prove the result with the following assertion added: 

(4) each vector in V has norm < R, where R > 0 is independent of Po and of 

a (as long as (3) holds). 

It suffices to prove the result so altered in the special case where a is piecewise- 

linear. In fact, if (an) is any sequence of pl-functions satisfying 

a - 1 / n  < a ,  <_ a and a , (Q)  C (O,T), kin, 

then the sequence formed of solutions to the problem with a replaced by an has 

an accumulation point which does the job for the original data. Similarly, we 

may restrict our attention to the case where Po ~ OP. 

Thus we assume we are in the special case described and set: 

A = c o n v { ( q , t ) � 9 2 1 5  and ~ ( q ) : s u p { t : ( q , t ) � 9  

Then, A is a convex polytope and ~ is the concave envelope of a. With S = 

{q �9 Q: (q,~d(q)) is a vertex of A} we have 

(5) I S l < o o a n d ~ ( s ) = a ( s ) < b v ( s ) , Y v � 9  V s � 9  

Ih  Introducing a certain multi[unction. This part. is influenced by S. Sorin's 

considerations of a family of functions of a single real variable; see pp. 201 203 

of [So]. We define for v �9 IF]: 

z(v) : lnaxqEQ(~d(q) - by(q)). 

This is a continuous function and, by (3) and the inequality bvlQ >_ a >_ O, 

(6) z _< T. 

For v E [P] we write: 

62(v) = {~ E /2: ~ separates by + z(v) from a}. 

Then ~(v)  # 0 by the separation theorem [Ro] and �9 takes values in non-empty 

convex compacta  and is u.s.c. We'll show that  

(7) If ~ E ~(v)  and z(v) > 0 then I{s �9 S: ~(s) = a(s)} I _> 2. 
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To see this fix a q E Q such that  "d(q) = by(q) + z(v) and note that  (5) and the 

assumption z(v) > 0 force q ~ S. Therefore, the smallest face of A containing 

(q,'d(q)) has at least 2 vertices, and they all lie on the graph of ~. 

It  follows from (7) that  (I)({v E [P]: z(v) > 0}) is a subset of 

H = U { { ~  E ~.: ~ ( s i )  = a(s~) for i = 1, 2}: s,, s2 E S, s, r s2}, 

a finite union of codimension two hyperplanes in s  and hence is of dimension 

_< dim(Q) - 1. (Although this is not needed later we note that  the set considered 

is actually contained in the (dim Q -  1)-skeleton of the canonical CW-subdivision 

of the space {~ E s ~ > 3 and ~(s) = ~(s) for some s E S}, and that  the latter 

can be shown to be homeomorphic to a dim Q-cell.) 

I I I :  Completing the proof. If z(po) ~_ 0 then we are done by the standard 

separation theorem for convex sets [Ro]. We hence assume z(po) > 0 and define 

for every compact set K C [P]: 

c o K  = {r(v)t + v ( 1 -  t): v E K and t  E [0,1]} U convr (K) .  

Then co K is deformable to conv r ( K )  and thus is contractible. Applying 

Remarks 1 and 3 with 

C = closure of {v E [P]: [Ivll < Randz(v) > 0}, 

where the value of R will be chosen later, we get a set V C [P] and a ~ E s such 

that  Po E conv r(V)  and: 

(8) e N{r v e v};  
(9) for each v E V, either z(v) = 0 or Ilvll = R and z(v) > O. 
By (8) and our definitions (2) holds whenever no v E V satsfies ]lv]l = R. Hence 

it remains to show that  if R exceeds a certain number (not depending on a and 

on P0) then IIvII < R, Vv E Y. 

To this end suppose v0 E V satisfies Iiv0I] = R and write w(v) := v - r(v) 

for v E IF] and W(F) := {w(v): v E r - l ( F ) }  for F C P.  Let ~v be a collection 

of open faces of P such that  U 9v is contained in no proper face of P. Then 

N{W(F) :  F E ~'} = {0}, so for every collection {w} U {WF}F~J: of non- 

zero vectors satisfying WE E W(F)VF E $" there exists an F E jc such that  

Z(w, wF) _> a,  where a is an angle in (0, r / 2 )  that  depends only on P. (This is be- 

cause the unit sphere is compact and there are only finitely such families ~'.) Now, 
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since P0 E int P N conv r(V),  the set r(V) is contained in no proper face of P and 

there exists a Vl E V such that either Z(w(vo), w(vl))  > a or vl E int P. With 

D: = suppER [[p[[ we have l iT(V1)- W(Vo)[[ ~ I[W(V0)[[ sin(a) > ( R -  D)s in(a)  

and 

Ilvl - v011 > ( R  - D) sin(a) - 20 .  

Let ~i: = ~ -  z(vl); then qol supports by, and [z(vl) - z(v0)[ < T, by (6) and the 

fact that z(vl) >_ O. Hence the desired conclusion follows from (1). I 

We now prove the result on a system of inequalities needed in section 3. Below, 

I and K are finite sets and A := A(K);  then [A], the affine span of A in R K, 

equals {x E RK: x"  e = 1}. In the subsequent proofs we sometimes canonically 

identify vectors in R g with restrictions to [A] of the functionals they induce, and 

thus R g with the set s of all affine functionals on [A] and scalar multiples of e 

with constant functions on [A]. 

PROPOSITION 2: Let a: A ( K )  --, R and h: A( I )  x A ( K )  ~ R ~: be continuous 

functions such that 

(10) h is a//ine with respect to the variable a E A ( I ), Vp E A(K),  and 

(11) Vp, q E A ( K )  3a E A(I )  such that h (a ,p ) .q  >_ a(q). 

Then, given P0 E A(K),  there exist a set P0 C A(K)  of cardinality <_ IK[ and 

vectors ~rp E A( I )  (p E Po) and ~ E ~g such that 

(12) >_ a(q), Vq e 

(13) Po E conv Po; 

(14) Vp E Po Vk E K we have qa k >_ hk(~rp, p), with equality occurring in place 

of >_ whenever pk > O. 

Proof'. For p E A we let 

bp(q) := m a x h ( a , p ) . q  = maxh(e~,p) .q  for q E [A]. 
iEI 

We claim that  (cf. [So, p. 203]): 

(15) If a qo E / :  supports bp then ~ = h(a,p) for some a E A(I) .  
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In fact, each maximal  proper face of the epigraph B of bp is contained in a 

hyperplane of ~t( • R given for some i �9 I by {(q,t) �9 [A] • ~: t = h(e i ,p ) ,  q}. 

Take an x �9 B fq {(q, qa(q)): q �9 [Q]} and let Io denote the set of all indices 

i �9 I corresponding to maximal  proper faces of B that  contain x. Then by a 

reformulation of Farkas'  lemma [Ro] it follows that  for some a �9 A(Io) C A( I )  

we have qo = ~ielo a( i )h(e i ,p)  = h(a,p) ,  as desired. 

For k �9 K let wk = I K l - l e  - ek be the outward vector normal to the maximal  

proper face of A opposite to ek. The space E: = [A] - [A] = {x �9 R/( : x-  e = 0} 

is a union of IKl-many cones, each generated by all vectors wk but one. Hence 

each v �9 E can be uniquely writ ten in the form EAkwk, where all the Ak's are 

_ 0 and one of them is 0, and we define Lv = E)~kek. On any of our cones L 

is an isomorphism onto a "quadrant" {x �9 RK: x > 0 and x k = 0}. I t  follows 

that  limll~,_,,,lt__. ~ liLy' - Lv"ll = co, whence the family {b~}~e[A ] defined by 

b. := b~(.) + L(v - r(v))  satisfies condition (1). Applying Theorem 2 and (15) 

we get a set V C [A] and a ~ �9 R K satisfying (12) and such that  Po � 9  r ( V )  

and 

(14)' Vv �9 V 3 a .  �9 A( I )  with ~ = h ( a , , r ( v ) )  + L ( v -  r(v)) .  

We write P0 = r (V)  and for every p �9 P0 choose a Vp �9 r - l ( p )  M V and write 

ap = a ~ .  It  remains to show that  if v �9 V and k �9 K satisfy (r(v))  k > 0 then 

(L(v - r(v)))  k = 0. However, we then have v - r(v)  = E)~k, wk, where all the 

~k,'s are _> 0 and ~k = 0, so using the definition of L completes the proof. | 

APPENDIX. A more direct proof of Proposition 2 can be given as follows. We 

write for v �9 [A] : 

r(v) (k)  := max(v k, 0 ) / E { v ' :  v l >__ 0} and u(v)(k)  := I min(v k, 0)1; 

b,(q) := maxa h(a, r ( v ) ) ,  q + u (v ) .  q for q �9 [A]. 

Suppose we showed the existence of a set V C R K and of a qo �9 s such that  

Po �9 convr (V) ,  a < ~[A and ~ supports b,, Vv �9 V. By (15) we then have 

(14)" Vv e V 3 a v e  A with ~ = h(av, r(v))  + u(v).  

Thus letting Po = r (V)  and ap = a.~, where Vp E r - l ( p )  M V for p �9 P0, we 

easily see that  (12)-(14) hold (note that  u(v)(k)  = 0 if r (v) (k )  > 0). 
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To get a pair (V, ~) as above follow the proof of Theorem 2 taking P = Q = A. 

Only the last paragraph of that  proof needs to be simplified and modified as 

follows: 

We show that it suffices to take R = max{liviI: v �9 [A] and infk v(k)  > -2T1}, 

where T1 := T + maxo,piih(a,p)II . (We have R < cr because v .  e = 1 for 

v �9 [A].) In fact, suppose ]lvoi] > R for some Vo �9 V and let l �9 K be such that 

vo(l) < -2T1; then U(Vo)(1) > 2T1. By (8) and (15) we infer that 

(14)'" Vv E V 3 a .  E A with ~ = h(a , ,  r(v)) + u(v)  + z(v)e. 

Hence ~(l) > T1, by (9). However, as Po E conv r (V )  N int A there also exists a 

v E Y such that  r(v)(1) > 0; then u(v)(1) = 0 and ~(l) _< T1 by (14)'" and (6), a 

contradiction. I 

Remark:  Alternatively, one can introduce in a standard fashion variables u k > 0 

that  allow to control (14): 

= {(p ,u)  E A • RK: u k >_ O and pku k = 0 f o r a l l k E K } .  

It turns out that  ~, is homeomorphic to R l for I = ] K ] -  1. (In fact, a homeo- 

morphism ~ --~ {z E RK: x . e  = 1} may be given by (p ,u)  ~-* (1 + Iiuitl)p - u 

and its inverse by v ~-* (r(v), u(v)); we skip the verification.) This allows one to 

apply Theorem 1 and to proceed as above, with ~ playing the role of [A] and 

the projections ~ ~ A and ~ --~ R g playing the role of the functions r and u, 

respectively. I 

3. U n d i s c o u n t e d  repeated  two-person  games  of  incomple te  

informat ion  on  one  side 

One-shot games of incomplete information on one side were first introduced by 

J. Harsanyi [HI and the infinitely repeated ones of this type by R. Aumann and 

M. Maschler [Au-Mal]; further basic results relevant to this section were obtained 

in [Au-Ma-St] and [So]. A brief description is as follows. A game between two 

players named A and B proceeds in infinitely many successive stages. In the 

0-th stage a k is chosen from a finite set K of "states of nature" according to 

a probability distribution P0 C int A(K) .  In any subsequent stage each of the 

players selects a "pure action" from a finite set I (for A) or J (for B), gaining a 
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stage-payoff Ak(i,j) (for A) or Bk(i,j) (for B) which depends only on the pure 

actions i E I and j E J selected in this stage and on the "true state of nature" k, 

chosen at stage 0. (The game is undiscounted because there is no geometrically 

decreasing weighting of the consecutive stage-payoffs.) The families {Al }teg and 

{Bl}teK and the distribution P0, as well as the rules of the game, are given to the 

players before the game starts as their initial common knowledge. At any stage 

the players also know the pure actions both of them took on preceding stages 

and .A (but not B) knows the outcome k E K of the 0-stage. 

In this section we prove that  the games above admit an equilibrium, and in 

fact one of a very special type studied in earlier work of other authors. We 

describe this equilibrium later but at this moment we would like to say that 

its nature is such that for the players to have a chance of making use of it, it 

is natural to assume that pre-play communication is admitted by the rules of 

the game. However, even if inaccessible, this equilibrium remains to be one if 

no communication is permitted, and we leave aside the question whether and 

how can the players actually reach an equilibrium with pre-play communication 

prohibited. 

For a mathematical setup, let I* = A(I)  and J* = A(J )  be the spaces of 

mixed strategies of the respective players and let A denote A(K).  A b e h a v i o u r  

s t r a t e g y  of a player is a sequence of functions: (K x (I • J)'~ ~ I*)n>0 for A 

and ((I  • j ) n  _~ J*)~>0 for t~. (See [B1], [Ku], [Au-Ma-St].) Thus for each stage 

a behaviour strategy just gives a recipe determining a probability measure on the 

set of player's pure actions based on the appropriate part of the past history of 

the game; it shouldn't be confused with elements of the sets I or J or I* or J* 

(also called "strategies" or "mixed strategies")~ A m i x e d  b e h a v i o u r  s t r a t e g y  

is* a finite list of behaviour strategies of a player and a probability measure 

on the list's indexing set; for player A, this measure may depend on the true 

state of nature. (After stage 0, the player under consideration performs a lottery 

according to this probability distribution and decides to apply throughout the 

resulting behaviour strategy. By a general theorem of H. W. Kuhn ([Ku], [Se]) 

or by a direct argument the use of such strategies can be eliminated in favour of 

behaviour strategies, but doing so would complicate our exposition.) 

Let H = (I  • J)r162 A pair of behaviour strategies, s for A and t for B, 

* Our terminology and definitions differ slightly from ones used in other sources 
(cf. [Se]), but lead to equivalent notions. 
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determines on K x H a probability measure #~,t such that the probability of the 

K-coordinate to be 1 is po(l) and, conditionally on the previous coordinates, the 

measure on the n-th factor of (I  x J ) ~  is the product of the measures determined 

at the n-th stage by the strategies in question, given the previous information. 

This definition extends to the case where s and t are mixed behaviour strategies 

to yield a measure #8,t defined on K x L~ x Lt • H, where L~ and Lt are the 

indexing sets for the lists of strategies for s and t, respectively. Given such a pair 

(s, t) one may consider the sequence of arithmetic means of the consecutive stage- 

payoffs of a player C = A, B, integrated with respect to the induced conditional 

measure on a given Borel subset S of K x L8 x Lt • H; its limit superior (resp. its 

limit, if existing) will be called C's valuation of (s, t) on S and denoted VcS(S, t) 
(resp. ESc(S, t)). For z in the disjoint union of the sets K, L~ and Lt we agree 

Vc ~ to mean Vc S, where S is given by the requirement that the corresponding 

coordinate be z; also, we drop the superscript S if S = K x L~ • Lt • H and 

identify K • L~ x Lt x H with K x L~ • H (resp. with K • H) if Lt is a singleton 

(resp. if Ls is, too). We have VC us~ < max,~ Vc s~ . 

For p E A we write A(p) = ~kcKPkAk and B(p) = ~k~KpkBk and, using 

the min-max theorem, we define a(p) and b(p) by the formulas: 

a(p) := max min aA(p)r and b(p) := rain maxaB(p)~- = max min aB(p)r. 
oEI*  r E  J* a E l *  rE J* r E  J* a E I *  

We now proceed to describe S. Sorin's notion of an "independent and 2 safe 

joint plan equilibrium", which is a specification of a weakened form of the "joint 

plan equilibrium" of R. Aumann, M. Maschler and R. Stearns. The discussion 

below and in the appendix to this section is motivated by that in [Au-Ma-St] 

and in [So] but differs in being independent from the 0-sum case studied in [Au- 

Mall (a paper nearly inaccessible in its original edition but to be reprinted in 

[Au-Ma2]) and in taking closer to the surface the role of condition (El)  to follow, 

crucial for both the need and the possibility of using results from w In general, 

by an e q u i l i b r i u m  one understands a pair (s*, t*) of mixed behaviour strategies 

such that E a(s*,t*) and EB(s*,t*) exist and satisfy E.a(s*,t*) > VA(s,t*) and 

Et3(s*,t*) >_ Vts(s*,t) for all behaviour strategies s,t of respective players. (A 

result of S. Hart  [Ha] gives a complete characterization of all equilibrium valuation 

pairs for this game; see also [Au-Ha].) An i n d e p e n d e n t  a n d  2 safe j o in t  p l an  

is a very specific kind of an equilibrium which may be described as follows. 

B starts by finding, if it can, a vector ~ E R g , a finite subset P0 of A and for 
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every p E P0 elements ap E I*, Tp E J* and Ap E (0, 1] such that 

(El)  Po = ~pepo ApP and ~-~pePo )~p = 1; 

(E2) ~ . q >_ a(q) V q E A; 

(E3) aB(p)rp>_b(p), V p E P 0  V a E I * ;  

(E4) ~k > apAkrp V p E Po V k E K,  with = occurring instead of > 

whenever pk > 0. 

B also finds a bijection f of Po into a finite power of I (say, into It; one may 

assume ]I] > 2) and for each p E P0 takes a function hp I J . = (hp, hp). N "* I • J 

such that 

l imn_~i{m:  m _< n and hp(m) = ( i , j ) } l / n  = ap(i)rp(j), V(i , j )  E I x J. 

chooses to convey all this structure to ,4 along with the following description 

of a pair (s*, t*). 

,4's mixed behaviour strategy s* is a combination of certain behaviour strate- 

gies Sp (p E Po) taken with weights x~ = )~ppk/p~, where k is the true state of 

nature. (I.e., A chooses after stage 0 a p E P0 following this distribution xk on Po 

and decides to use Sp throughout.) Here, sp demands that `4's move at a given 

stage m be f (p)(m)  if m <_ 1 and be hi(m) if m > l and B followed h J in all 

preceeding stages > l, and that it be taken in accordance with a fixed probability 

' E I* for which max~ej ,  apB(p)T = b(p) if neither of the above distribution ap 

"if" conditions is satisfied. Y's behaviour strategy t* is to take arbitrary moves at 

the first I stages and at any next to play according to h i if there exists a (unique) 

p E P0 such that the sequence of the first 1 moves of `4 gave a point f (p)  and 

`4 followed h / in all stages > I played up to then, or else to play according to a 

strategy t~ given by the following consequence of a general result of D. Blackwell 

([Bl, p.6], cf. [Au-Mal] and [Au-Ma-St] for this particular application): 

LEMMA 4: Given ~p E Rh" satisfying (E2) player B has a behaviour strategy t~ 

such that for every behaviour strategy s of ,4, every k E K and every finite 

sequence x E (I  x j )n  (n E N) one has V[Ak'X](s,t~) ~_ ~k, where [k,x] denotes 

(k} x ((i~,jt)le~ E H: ( i l , j l ,  . . . , in,j~) = x}. 

It can be shown that the pair (s*, t*), if it exists, is an equilibrium; see the 

appendix to this section and the references given there for a discussion making 
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the role of conditions (El)  to (E4) easier to grasp. (These conditions correspond 

to what one gets by combining (i)-(iii) from [So, p. 197] with the requirement of 

[So, p. 199].) To establish the existence we need 

LEMMA 5: For every e > 0 there exists a continuous m a p  g: D ~ J* such that 

aB(p)g (p )  >_ b(p) - c for ali (a ,p)  �9 I* • A .  

Proof." Write v ( r ,p )  = m i n o a B ( p ) v  and T(p)  :-- {7- �9 J*: V(T,p) = b(p)}; 

then v: J* • A ~ ~ is continuous and concave in J* for fixed p. Since b also 

is continuous, there exists a 5 so that  liP' - Pll -< 5 implies IIb(p') - b(p)l ] < ~/2 

and IV(T,p') -- V(T,p) I < e/2 for every 7- E Y*. Create a simplicial subdivision 

A~ of A with mesh diameter less than 5. Create a piece-wise linear mapping 

g: A --, J* so that  if p is a vertex of A~ then g(p) is any member  of T(p); it 

follows easily that  g is as desired. (This Lemma is a special case of a much more 

general topological statement,  see [Hav].) | 

Now we are able to prove: 

THEOREM 3: Everv  undiscounted infinitely repeated two-person game o f  

incomplete  information on one side has an independent  and 2 safe joint  plan 

equilibrium. 

P r o o f  We need to find a system satisfying (E2)-(E4) and such that  Po E 

cony Po. Given ~ > 0 let g be as asserted in Lemma 5. Applying Proposi- 

tion 2 with hk(a ,p )  = aAkg(p)  for k �9 K we get a set P0 with ]Po] _< II(] and 

vectors: ~ E R K,  ap C I* and Vp := g(p) C J* (p C Po) satisfying all the prop- 

erties needed, except that  b(p) is replaced by b(p) - ~ in (E3). Taking a cluster 

point of these approximate solutions as c --* 0 will give the system we seek, but 

its existence needs commenting for the case of the ~a's (the remaining elements 

of the systems belong to certain apriori given simplices and thus have converging 

subsequences). However, as Po �9 int A M cony Po, for every k E K there exists a 

p E Po with pk ~ 0. Hence condition (E4) yields a bound on ]]~I]~ depending 

only on the payoff matrices, thus locating the ~ 's  in a desired compact set. | 

Appendix: The equilibrium property of independent and 2 safe plans 

To make the role of condition (El)  more transparent we assume in greater gen- 

erality that  (El)  and the equality xk(p)  = Appk/p k are dropped and that  an 
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arbi trary system of vectors xk E A(P0), k E K, is used to define the pair of 

strategies as described before. We keep assuming (E2)-(E4), with "whenever 

pk > 0" in (E4) replaced by "whenever xk(p) > 0". 
We first note that  for all (k,p) E K x Po and any set S C {(k,p)} x H the 

deterministic strategies hp i and h g satisfy: 

(i) s E~ (hp, hdp) = o'pCkTp, where C = A if C = A and C = B if C = B. 

Next, we fix a k E K and a behaviour strategy s of A and define 

Sk := {k} x {h E H: h is such that  B was given a cause to apply t~,}; 

then 

(ii) VS~(s,t ,) < ~k. 

(We postpone the proof.) Modulo a #s,t .-measure 0 set, Uk := {k} x H \ Sk 

is a disjoint union of the sets Uk(p) := {u E {k} • ( I  x j)oo: the first l of the 

/-coordinates of u give f(p) and the I • J-coordinates of u from stage l + 1 on 

are described by hv}. Letting Yk(P) = P,,t* (Uk(p))/#,,t~ (Uk) we get by (i) and 

(E4): 

E gk (s, t*) = Epyk(p)apAkTp <_ Epyk(p)qok = ~k. 

If  s = s* then above we have = in place of _< and #~,t. (Sk) = 0. Hence 

V~(s,t*) <_ max(VSk(s,t*),EUa~(s,t*)) < ~k = E~(s*,t*) 

and V.a(s, t*) < E.4(s*, t*) by the arbitrareness of k. 

To get information on VB(s*, .) write v v for Ekpo(k)xk(p), the total  probabili ty 

of.A's lottery to yield an outcome p E P0. Given such an outcome, the conditional 

probabili ty of the true state of nature to be k is/5(k) := po(k)xk(p)/%; here 

~p > 0 since Po E int A(K) .  We fix p E P0 and a behaviour strategy t of B and 

denote by p the relative measure induced by #s*,t on K x {p} x H.  We also 

write T = UTn,  where Tn := g • {p} x {h E Hp: h(m) ~ hp(m) for some m E 

1~1 with I < m _< n}. The remaining discussion rests on the fact that,  for each 

k E K :  

(iii) On T the probability of the true state of nature to be k is 15(k), 

(iv) t) _< 
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Assuming (iii) and (iv) we note that (iii) keeps being valid with T replaced by 

S := g x {p} x H \ T, whence ESB(s *, t) = Ek/5(k)apBkTp = apB(/5)Vp by (i). 

When t = t* we have #(T)  = 0, so by (E3) we infer that if/5 = p then 

Vg(s*,t) <_ max(ES(s*,t), VT(s*,t)) < apB(p)Tp = E~(s*,t*). 

Thus (s*, t*) is an equilibrium whenever/5 = p Vp e P0. Except for the justifica- 

tion of (ii)-(iv), the discussion may be concluded by invoking the easily verifiable 

lemma (for the "only if" part set A(p) := vp for all p E P0): 

LEMMA 6: The condition /5 = p Vp E Po holds if and only if there exists a 
A E A(Po) such that Po = EpA(p)p and the vectors xk E A(P0) satisfy xk(p) = 
A(p)p(k)/po(k), Vk E K, Yp E Po. 

To demonstrate (iii) and (iv) we fix n E N, split T~ as K x {p} x X • Y, where 

X is the image of Tn under the projection to the product of the first n factors of 
k,x 

(I  x j)oo, and from the definition of tt read off the conditional measures #v  on 

Y, #~ on (I  x j )n  and #K on K such that # fK k,~ k = f x  #v d#x(x)dPg(k)" Then, 

#~ is given by 15 and fg  Bad#K = B(/5). With (ira, jm) denoting the projection 

of K x P x H onto the m-th factor of H -- (I  x j)oo, the mean value on Tn of B's 

m-th stage payoff satisfies for m > n (we treat I,  J as subsets of A(I) ,  A(J)) :  

r,~,,~ := (#(T,~))-l /T i,~Bkj,~d#= (p(T,~))-l /K f x  /v i ,~Bkjmdpvd#xdpK.  

The  strategies t and s*]K x {p} x H = Sp are independent of k; thus so are the 

measures #k := f x  k,~ k k,x #y dPx(X ). Also, with respect to any of the measures #v  
! the random variables im and jm a r e  independent and im has distribution ~Xp. 

Thus a := f x x y  ld#k and r := f x x y  jmd#k/a E J* are independent of k and 

integrations above yield f x  fv  equal to aalvBkT and rn,m = #(Tn)-laqpB(/5)T. 
Similarly, for the characteristic function gk of {(k,p)} x X x Y we get fT~ gkd# = 
/5(k)a and (hence) #(T~) -- fT~ ld# = a. Combining these we get (iii) and (iv) 

(first with Tn in place of T, where however n is arbitrary). 

Inequality (ii) follows similarly, by using a filtration of Sk analogous to the 

filtration of T by the T~'s and then estimating 

y �9 �9 k,~ �9 mAk2mdpy (y)= V[A(k'*)](s,t~) <_ ~k 

in the partial integration. | 
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Remark: The result of Blackwell [BI] admits for establishing additional 

properties of the strategy t~, of Lemma 4 and thus also of the pair (s*, t*). 

The interested reader should consult also [Au-Ma-St] and [So]. | 
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